Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation.

نویسندگان

  • Jinfei Xu
  • Kan Liao
چکیده

During 3T3-L1 preadipocyte differentiation induction, the insulin-stimulated insulin-like growth factor-1 (IGF-1) receptor signal is responsible for the induction of adipocyte differentiation. Treatment with inhibitors of phosphatidylinositol 3-kinase, LY294002 or wortmannin, leads to the complete blockade of adipocyte differentiation in 3T3-L1 preadipocytes. Of the three factors (1-methyl-3-isobutylxanthine, dexamethasone, and insulin) inducing 3T3-L1 preadipocyte differentiation, only insulin was able to activate the phosphatidylinositol 3-kinase-protein kinase B/Akt signal cascade. In 3T3-L1 preadipocytes, protein kinase B/Akt 1 RNA interference not only suppressed the expression of protein kinase B/Akt 1 but also blocked hormone-induced adipocyte differentiation. In these protein kinase B/Akt 1 RNA interference cells, the signal molecules upstream of protein kinase B/Akt 1, such as IGF-1 receptor and insulin receptor substrate-1, were normally activated by insulin stimulation, whereas insulin-stimulated phosphorylation of forkhead transcription factor (FKHR), which is a downstream molecule of PKB/Akt 1, was blocked. Thus, protein kinase B/Akt 1 is an important signal mediator in IGF-1 receptor signal cascade for inducing adipocyte differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes.

The first stage of 3T3-L1 adipocyte differentiation is growth arrest, which is achieved by contact inhibition at confluence. In growth-arrested confluent 3T3-L1 preadipocytes, alpha-tubulin acetylation and primary-cilium formation were induced. The blockade of primary-cilium formation by suppressing IFT88 or Kif3a inhibited 3T3-L1 adipocyte differentiation. IGF-1 (IGF-I)-receptor signaling, whi...

متن کامل

Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction.

Lipid rafts/caveolae are found to be essential for insulin-like growth factor (IGF)-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. In 3T3-L1 cells, IGF-1 receptor is located in lipid rafts/caveolae of the plasma membrane and can directly interact with caveolin-1, the major protein component in caveolae. Disruption of lipid rafts/caveolae by depleting cellular cholest...

متن کامل

The critical role of Shc in insulin-like growth factor-I-mediated mitogenesis and differentiation in 3T3-L1 preadipocytes.

Insulin-like growth factor-I (IGF-I) stimulates mitogenesis in proliferating preadipocytes, but when cells reach confluence and become growth arrested, IGF-I stimulates differentiation into adipocytes. IGF-I induces signaling pathways that involve IGF-I receptor-mediated tyrosine phosphorylation of Shc and insulin receptor substrate 1 (IRS-1). Either of these adaptor proteins can lead to activa...

متن کامل

SRA Regulates Adipogenesis by Modulating p38/JNK Phosphorylation and Stimulating Insulin Receptor Gene Expression and Downstream Signaling

The Steroid Receptor RNA Activator (SRA) enhances adipogenesis and increases both glucose uptake and phosphorylation of Akt and FOXO1 in response to insulin. To assess the mechanism, we differentiated ST2 mesenchymal precursor cells that did or did not overexpress SRA into adipocytes using combinations of methylisobutylxanthine, dexamethasone and insulin. These studies showed that SRA overexpre...

متن کامل

Tumor Necrosis Factor- Suppresses Adipocyte-Specific Genes and Activates Expression of Preadipocyte Genes in 3T3-L1 Adipocytes Nuclear Factor- B Activation by TNF- Is Obligatory

Tumor necrosis factor(TNF) is a contributing cause of the insulin resistance seen in obesity and obesity-linked type 2 diabetes, but the mechanism(s) by which TNFinduces insulin resistance is not understood. By using 3T3-L1 adipocytes and oligonucleotide microarrays, we identified 142 known genes reproducibly upregulated by at least threefold after 4 h and/or 24 h of TNFtreatment, and 78 known ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 34  شماره 

صفحات  -

تاریخ انتشار 2004